Thermochemistry

1. I 0.315 moles of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ burn in a bomb calorimeter containing 5.65 liters of water, what's the molar heat of combustion of hexane (the water temperature rises 55.4 ${ }^{0} \mathrm{C}$)? The heat capacity of water is $4.184 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$.
a) $4150 \mathrm{~kJ} / \mathrm{mol}$
b) $1310 \mathrm{~kJ} / \mathrm{mol}$
c) $4150 \mathrm{~J} / \mathrm{mol}$
d) $1310 \mathrm{~J} / \mathrm{mol}$
2. If I burn 22.0 grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ in a bomb calorimeter containing 3.25 liters of water, what's the molar heat of combustion of propane if the water temperature rises $88.5^{\circ} \mathrm{C}$?
a) $1.20 \times 10^{3} \mathrm{~kJ}$
b) $2.40 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$.
c) $1.20 \times 10^{3} \mathrm{~J}$
d) $2.40 \times 10^{3} \mathrm{~J} / \mathrm{mol}$.
3. What units of energy are commonly used in chemistry?
a) Joules
b) Liters
c) Kilogram
d) Calories

Which of the following statements correctly describes the signs of q and w for the following exothermic process at $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=370 \mathrm{~K}$?

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A) q and w are negative
B) q is positive, w is negative
C) q is negative, w is positive
D) q and w are both zero
4. What is the units for heat capacity?
a) J
b) $\mathrm{g} /{ }^{\circ} \mathrm{C}$
c) $\mathrm{J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
d) $\mathrm{J} /{ }^{\circ} \mathrm{C}$
5. A piece of silver of mass 362 g has a heat capacity of $85.7 \mathrm{~J} .{ }^{\circ} \mathrm{C}^{-1}$. What is the specific heat of silver?
a) $0.237 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
b) $237 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
c) $23 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
d) $47 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
6. Calculate the amount of heat liberated (in kJ) from 366 g of mercury (specific heat of mercury $0.139 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$) when it cools from 77.0 to $12.0^{\circ} \mathrm{C}$.
a) 33.1 kJ
b) -3.31 kJ
c) 3.31 J
d) 1000 J
7. A 6.22 kg piece of copper metal (specific heat of copper $0.385 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$) is heated from $20.5^{\circ} \mathrm{C}$ to $324.3^{\circ} \mathrm{C}$. Calculate the heat absorbed (in kJ) by the metal.
a) 728 J
b) 728 kJ
c) 72 J
d) 27 kJ
8. SI unit of work is
a) Atmosphere
b) Joule
c) Calories
d) Second
9. A chemical reaction that absorbs heat from the surroundings is said to be \qquad and has a \qquad $\Delta \mathrm{H}$ at constant pressure
a) endothermic, positive
b) endothermic, negative
c) exothermic, negative
d) exothermic, positive
10. Which one of the following statements is true?
a) Enthalpy is an intensive property.
b) The enthalpy is not a state function
c) Enthalpy is a state function.
d) H is the value of q measured under conditions of constant volume.
$11 . \Delta \mathrm{H}$ for an endothermic process is \qquad while $\Delta \mathrm{H}$ for an exothermic process is \qquad .
a) zero, positive
b) zero, negative
c) positive, negative
d) negative, positive
12.Of the following, which one is a state function?
a) E
b) q
c) w
d) All of the above
13. When a system \qquad $\Delta \mathrm{E}$ is always negative.
a) absorbs heat and does work
b) gives off heat and does work
c) absorbs heat and has work done on it
d) none of the above is always negative
14.Consider the following standard heats of formation:
$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})=-3110 \mathrm{~kJ} / \mathrm{mol}, \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-286 \mathrm{~kJ} / \mathrm{mol}^{2}, \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})=-1279 \mathrm{~kJ} / \mathrm{mol}$
Calculate the change in enthalpy for the following process:

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})
$$

a) 290 kJ
b) 2117 kJ
c) 1720 kJ
d) 0 kJ
15. Calculate the work for the expansion of CO_{2} from 1.0 to 2.5 liters against a pressure of 1.0 atm at constant temperature.
a) 1.5 liter $\cdot \mathrm{atm}$
b) 2.5 liter $\cdot \mathrm{atm}$
c) -1.5 liter $\cdot \mathrm{atm}$
d) -2.5 liter $\cdot \mathrm{atm}$
16. One mole of an ideal gas is expanded from a volume of 1.00 liter to a volume of 10.00 liters against a constant external pressure of 1.00 atm . How much work (in joules) is performed on the surroundings? $(\mathrm{T}=300 \mathrm{~K} ; 1 \mathrm{~L}$ atm $=101.3 \mathrm{~J})$
a) 456 J
b) 912 J
c) 2740 J
d) 2870 J
17.A 25.0 g piece of aluminum (which has a molar heat capacity of $\underline{\mathbf{2 4 . 0 3 J}} /{ }^{\circ} \mathbf{C ~ m o l}$) is heated to $82.4^{\circ} \mathrm{C}$ and dropped into a calorimeter containing water (specific heat capacity of water is $\mathbf{4 . 1 8} \mathbf{J} / \mathbf{g}^{\circ} \mathbf{C}$) initially at $22.3^{\circ} \mathrm{C}$. The final temperature of the water is $24.9^{\circ} \mathrm{C}$. Calculate the mass of water in the calorimeter.
a) 187 g
b) 6.57 g
c) 3180 g
d) 2120 g

18 Consider the following data:
$\begin{array}{ll}\mathrm{Ca}(\mathrm{s})+2 \mathrm{C}(\text { graphite }) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s}) & \Delta \mathrm{H}(\mathrm{kJ})=-62.8 \\ \mathrm{Ca}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s}) & \Delta \mathrm{H}(\mathrm{kJ})=-635.5 \\ \mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) & \Delta \mathrm{H}(\mathrm{kJ})=-653.1 \\ \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}(\mathrm{kJ})=-1300 \\ \mathrm{C}(\text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}(\mathrm{kJ})=-393.51\end{array}$
Use Hess's law to find the change in enthalpy at $25^{\circ} \mathrm{C}$ for the following equation:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})
$$

a) -713 kJ
b) 713 kJ
c) -318.8 kJ
d) -3045 kJ

